PROJECT PARTNERS

Arcelik A.S.

6 Small-Medium Enterprises (GASER, CNANO, IDENER, IRIS, EXELISIS, INCOTEC)

3 Large Enterprises (CRF, ARCELIK, IAI)

3 Universities (POLIMI, AUTH, UBU)

Funded by the European Union

This project has received funding from the European Union's Horizon Europe research and innovation programme under grant agreement

No 101058699

Project Coordinator

GASER OSSIDO DURO SRL

Via Po 0027, 20089, Rozzano, ITALY

www.gruppogaser.com

www.freeme-project.eu info@www.freeme-project.eu

METALLIZATION
PROCESS
FOR PLASTIC
SURFACES

PROJECT DETAILS

Start date: JUNE 2022

Duration: 4 YEARS

EU contribution: EUR 4,8 M.

CHALLENGE

Plastics have been used in industrial applications due to their lightweight, flexible, strong and low-cost properties, being particularly favoured in the automotive industry. To enhance their wear and corrosion resistance, as well as the aesthetic appearance, a metallic coating on the plastic surface is often required. However, most plastics are non-conductive material and require special treatment of the plastic surface, including surface etching and activation, metallization via electroless plating, to finally deposit the metallic coating via Plating on Plastics process. The current pre-treatment processes use toxic substances (i.e. Cr⁶⁺) and critical raw materials (i.e. Pd).

OBJECTIVES

► To implement a safe and sustainable by design (SSbD) strategy

➤ To develop a metallization technology of plastic surfaces based on REACH compliant sprayable
 UV-curable composite biobased resins.

► To develop Cr⁶⁺ free etching technologies for plastics pre-treatment.

➤ To develop in-silico techniques (simulation and modelling)

► To develop fast and accurate inspection method for the QC of the process

► To develop a data driven Decision Support Tool

> To facilitate the acceptance of the new technologies by the market through standardisation activities

The FreeMe project aims to eliminate the use of Cr⁶⁺ and Pd from the Plating on Plastics (PoP) process, by proposing two safe and sustainable by design approaches for the metallization of polymeric surfaces, based on REACH compliant chemicals:

- 1. Sprayable composite biobased resins
- 2. Cr⁶⁺ & Pd free pre-treatment of the plastic surface

Safe -and sustainable
- by - design
metallic coatings and
engineered surfaces

END APPLICATIONS

AUTOMOTIVE



AEROSPACE

HOME APPLIANCES

